Algebraic Foundations for Type Theories

Marcelo Fiore

COMPUTER LABORATORY
UNIVERSITY OF CAMBRIDGE

Types 2011 8.IX.2011

The known

Alg. Theories

(mon, grp, ring, mod, . . .)

The Unknown

Alg. Theories

(mon, grp, ring, mod, . . .)

?

Type Theories

(simply typed, dep. typed, polymorphic, linear, . . .)

Programme

mathematical models meta-theories

- Development of algebraic meta-theories for formal languages.
 - Semantics
 - Model theory.
 - Syntax
 - Initial-algebra semantics.
 - Structural induction and recursion.
 - Substitution.
- Synthesis of deduction systems for equational reasoning and computation by rewriting.

^{ightharpoonup} [1], [2], [14], [10], [8, 12], [9, 11].

The Talk

- I Modelling of simple type theories.
- II Modelling of dependent type theories.
- III Foundations.
- ightharpoonup [1], [2], [14], [10], [8, 12], [9, 11].

I

Algebraic Modelling of Simple Type Theories

Simple Type Theory

	algebraic theories	simply-typed theories
types	unstructured	algebraic
terms	algebraic	algebraic with binding

The syntactic theory should account for:

- variables and meta-variables
- ightharpoonup variable binding and α -equivalence
- capture-avoiding and meta substitution
- mono and multi sorting

Categories of Contexts

Def: An S-sorted *context structure* is given by

- a small category C with terminal object,
- ▶ objects $\langle \sigma \rangle \in \mathbb{C}$ for all $\sigma \in S$,
- product diagrams

for all $\Gamma \in \mathbb{C}$ and $\sigma \in S$.

Example: FinSet^{op} is the initial *mono-sorted* context structure.

Example: Untyped λ -calculus.

Syntax:

$$t ::= x \mid t'(t'') \mid \lambda x. t'$$

Example: Untyped λ -calculus.

Syntax:

$$t ::= x \mid t'(t'') \mid \lambda x. t'$$

Algebras:

var:
$$1 \rightarrow A^{y(s)}$$

app:
$$A^2 \to A$$
 in $\widehat{\mathbb{C}}$

abs:
$$A^{y\langle s\rangle} \to A$$

$$\widehat{\mathbb{C}}=^{\operatorname{def}} \mathcal{S}\!\mathit{et}^{\mathbb{C}^{\operatorname{op}}}$$
 and $\mathbf{y}:\mathbb{C} \hookrightarrow \widehat{\mathbb{C}}$ is the

Yoneda embedding

Example: Untyped λ -calculus.

Syntax:

$$t := x \mid t'(t'') \mid \lambda x. t'$$

Algebras:

var:
$$1 \rightarrow A^{y(s)}$$

$$\mathsf{app}:\ A^2\to A\qquad \qquad \mathsf{in}\ \widehat{\mathbb{C}}$$

abs:
$$A^{y(s)} \rightarrow A$$

 $\widehat{\mathbb{C}}=^{\mathrm{def}} Set^{\mathbb{C}^{\mathrm{op}}}$ and $\mathbf{y}:\mathbb{C} \hookrightarrow \widehat{\mathbb{C}}$ is the Yoneda embedding

NB:

$$P^{y(s)}(\Gamma) = P(\Gamma, s)$$

as

$$\begin{array}{c|c}
\mathbb{C} & \longrightarrow \widehat{\mathbb{C}} \\
-,s & (-) \times \mathbf{y} \langle s \rangle & \neg \uparrow (-) \mathbf{y} \langle s \rangle & \neg \downarrow \\
\mathbb{C} & \longrightarrow \widehat{\mathbb{C}}
\end{array}$$

Example: Untyped λ -calculus.

Syntax:

$$t ::= x \mid t'(t'') \mid \lambda x. t'$$

▶ Algebras:

var: $y(s) \rightarrow A$

 $\mathsf{app}:\ A^2\to A\qquad \mathsf{in}\ \widehat{\mathbb{C}}$

abs: $A^{y(s)} \rightarrow A$

▶ Initial model:

$$\Lambda \in {\mathcal S\!et}^{\mathsf{FinSet}}$$

with $\Lambda(n)$ the set of α -equivalence classes of λ -terms with free variables amongst

$$\chi_1, \ldots, \chi_n$$

Single-Variable Substitution

Substitution algebras:

 $\mathsf{subst} : A^{\mathbf{y}\langle \mathsf{s}\rangle} \times A \to A$

satisfying

... natural axioms ...

Single-Variable Substitution

Substitution algebras:

subst :
$$A^{y(s)} \times A \rightarrow A$$

satisfying

... natural axioms ...

▶ Initial model:

$$\Lambda \in {\mathcal{S}et}^{\mathsf{FinSet}}$$

with capture-avoiding single-variable substitution.

Substitution Algebras

- 1. $u:A \vdash var(x)[u/x] = u$
- 2. $t:A,u:A \vdash t[u/x] = t$
- 3. $t: A^{y(s) \times y(s)}, x: y(s)$ $\vdash t(x,y) \lceil var(x) / y \rceil = t(x,x)$
- 4. $t: A^{y\langle s\rangle \times y\langle s\rangle}, u: A^{y\langle s\rangle}, v: A$ $\vdash (t(y,x)[u(x)/y])[v/x]$ = (t(y,x)[v/x])[u(x)[v/x]/y]

Substitution Algebras

- 1. $u:A \vdash var(x)[u/x] = u$
- 2. $t:A,u:A \vdash t[u/x] = t$
- 3. $t: A^{y(s) \times y(s)}, x: y(s)$ $\vdash t(x,y) \lceil var(x) / y \rceil = t(x,x)$
- 4. $t : A^{y\langle s \rangle \times y\langle s \rangle}, u : A^{y\langle s \rangle}, v : A$ $\vdash (t(y,x)[u(x)/y])[v/x]$ = (t(y,x)[v/x])[u(x)[v/x]/y]
- 5. $t, t' : A^{y(s)}, u : A$ $\vdash \mathsf{app}(t(x), t'(x))[^{u}/_{x}]$ $= \mathsf{app}(t(x)[^{u}/_{x}], t'(x)[^{u}/_{x}])$
- 6. $t: A^{y(s) \times y(s)}, u: A$ $\vdash abs(\lambda y. t(y, x))[u/x]$ $= abs(\lambda y. t(y, x)[u/x])$
- **►** [20, 22].

Free Constructions

- Explicit description of syntax with variable binding.
- Induction principle for syntax with variable biding.
- Definition of capture-avoiding substitution by structural recursion.

Free Constructions

- Explicit description of syntax with variable binding.
- Induction principle for syntax with variable biding.
- Definition of capture-avoiding substitution by structural recursion.
- Mathematical foundations for metavariables.

Metavariables

Kleisli maps

$$\mathbf{y}(\mathbf{n}) \to \mathcal{M}(\coprod_{i} \mathbf{y}(\mathbf{m}_{i}))$$

are in bijective correspondence with terms

$$t ::= x \mid t'(t'') \mid \lambda x. t'$$

$$\mid M_i[t_1, \dots, t_{m_i}]$$

with free variables amongst x_1, \ldots, x_n .

Definition of meta-substitution by structural recursion:

$${\mathfrak M}(X)\times Y^X\to {\mathfrak M}(Y)$$

Second-Order Equational Presentations

Example: Untyped λ -calculus.

 $(\beta) M : 1 \triangleright x \vdash (\lambda x. M[x]) x = M[x]$

 $(\eta) M : 0 \triangleright \cdot \vdash \lambda x. M[](x) = M[]$

Second-Order Equational Presentations

Example: Untyped λ -calculus.

$$(\beta) M : 1 \triangleright x \vdash (\lambda x. M[x]) x = M[x]$$

$$(\eta) M : 0 \triangleright \cdot \vdash \lambda x. M[](x) = M[]$$

Second-Order Equational Logic

(Extended Metasubstitution Rule)

$$M_1: m_1, \ldots, M_k: m_k \rhd \Gamma \vdash s \equiv t$$

$$\Theta \rhd \Delta, x_{i,1}, \ldots, x_{i,m_i} \vdash s_i \equiv t_i \quad (1 \leq i \leq k)$$

$$\Theta \rhd \Gamma, \Delta$$

$$\vdash s\{M_i := (\vec{x_i})s_i\}_{1 \le i \le k} \equiv t\{M_i := (\vec{x_i})t_i\}_{1 \le i \le k}$$

Results

Extension of the mathematical theory of (first-order) algebraic structure to simple type theory:

- Conservativity of Second-Order Equational Logic over Birkhoff's (first-order) Equational Logic.
- Soundness and completeness of Second-Order Equational Logic.
- Soundness and completeness of (bidirectional) Second-Order Term Rewriting.
- Presentation/theory correspondence via classifying categories and internal languages.
- Universal-algebra/categorical-algebra correspondence.
- Theory of syntactic algebraic translations.

II

Algebraic Modelling of Dependent Type Theories

Dependent Type Theory

	simply-typed theories	dependently-typed theories
types	algebraic	algebraic with binding
terms	algebraic with binding	algebraic with binding

The syntactic theory should account for:

- type dependency
- ightharpoonup variable binding and α -equivalence
- term and type substitution

▶ Dependency.

$$\vdash C_0$$

$$x, y : C_0 \vdash C_1(x, y)$$

Binding.

$$\frac{\Gamma, x : \sigma \vdash \tau}{\Gamma \vdash \Pi x : \sigma. \tau}$$

$$\frac{\Gamma, x : \sigma \vdash t : \tau}{\Gamma \vdash \lambda x : \sigma . t : \Pi x : \sigma . \tau}$$

Substitution.

$$\frac{\Gamma \vdash t : \Pi x : \sigma.\tau \qquad \Gamma \vdash u : \sigma}{\Gamma \vdash t(u) : \tau [^{u}/_{x}]}$$

$$(\lambda x : \sigma. t)(u) = t [^{u}/_{x}]$$

Categories of Dependent Contexts

Def: A *dependently-typed context structure* is given by

- a small category C with terminal object,
- ▶ a presheaf $S \in \widehat{\mathbb{C}}$,
- a functorial assignment of pullbacks

for all $\Gamma \vdash \sigma$ and $f : \Delta \rightarrow \Gamma$ in \mathbb{C} .

Type-Dependent Binding

► Local context-extension lemma.

For
$$\Gamma \vdash \sigma$$
 and $P \in \widehat{\mathbb{C}}_{/\Gamma}$,
$$P^{\mathbf{y}(\pi_{\Gamma \vdash \sigma})}(\Delta \stackrel{f}{\longrightarrow} \Gamma) \ \cong \ P(\Delta, \sigma[f] \to \Gamma) \ .$$

Type-Dependent Binding

Local context-extension lemma.

For
$$\Gamma \vdash \sigma$$
 and $P \in \widehat{\mathbb{C}_{/\Gamma}}$,
$$P^{\mathbf{y}(\pi_{\Gamma \vdash \sigma})}(\Delta \xrightarrow{f} \Gamma) \cong P(\Delta, \sigma[f] \to \Gamma) .$$

► Type-dependent binding operators.

$$\Pi_{\sigma} : S_{\Gamma}^{\mathbf{y}(\pi_{\Gamma \vdash \sigma})} \to S_{\Gamma} \text{ in } \widehat{\mathbb{C}}_{/\Gamma}$$

Decomposition of Binding Arities

▶ For $\Gamma \vdash \sigma$, consider the adjunction

$$\mathbb{C}/\Gamma \xrightarrow{\xrightarrow{\mathcal{T}^*}} \mathbb{C}/\Gamma, \sigma$$

Decomposition of Binding Arities

▶ For $\Gamma \vdash \sigma$, consider the adjunction

$$\mathbb{C}/\Gamma \xrightarrow{\overline{T}} \mathbb{C}/\Gamma, \sigma$$

It induces the adjoint situation:

Binding-arity decomposition lemma.

For $\Gamma \vdash \sigma$, the monad $(-)^{\mathbf{y}(\pi_{\Gamma \vdash \sigma})}$ on $\widehat{\mathbb{C}}_{/\Gamma}$ is induced by the adjunction $\varepsilon_{\sigma} \dashv \delta_{\sigma}$.

Binding Arities

We thus obtain the following situation

Binding Arities

We thus obtain the following situation

Type-Dependent Binding

► Type-dependent binding operators.

$$\Pi_{\sigma}: \prod_{\sigma} \left(\mathbf{y}(\Gamma, \sigma)^* S\right) \to S \text{ in } \widehat{\mathbb{C}}$$

Binding Arities

We thus obtain the following situation

Type-Dependent Binding

Type-dependent binding operators.

$$\Pi_{\sigma}:\prod_{\sigma}\left(\mathbf{y}(\Gamma,\sigma)^{*}S\right) o S \ \ \mathsf{in}\ \widehat{\mathbb{C}}$$

Term Binding

▶ Term binding operators.

For $\Gamma \vdash \sigma$ and $\Gamma, \sigma \vdash \tau$,

Variables

▶ This is to give a term Γ , $\sigma \vdash p : \sigma[\pi_{\Gamma \vdash \sigma}]$.

Variables

▶ This is to give a term Γ , $\sigma \vdash p : \sigma[\pi_{\Gamma \vdash \sigma}]$.

NB: Categories with attributes/families

The condition

is equivalent to *Dybjer's context comprehension* property: For all maps $f: \Delta \to \Gamma$ in $\mathbb C$ and terms $\Delta \vdash t: \sigma[f]$ there exists a unique map $\langle f, t \rangle : \Delta \to (\Gamma, \sigma)$ in $\mathbb C$ such that $p[\langle f, t \rangle] = t$ and $\pi_{\Gamma \vdash \sigma} \circ \langle f, t \rangle = f$.

► The initial model is the classifying category.

Substitution Structure

For $\Gamma \vdash \sigma$,

subject to axioms.

II

Algebraic Foundations

Kan Extensions

Every

$$f: \mathbb{X} \to \mathbb{Y}$$

induces

$$\begin{array}{c}
\xrightarrow{f_*} \\
\uparrow \\
\uparrow \\
\uparrow \\
\uparrow \\
f_!
\end{array}$$

where

$$\mathbb{PC} =^{\operatorname{def}} \mathcal{S}et^{\mathbb{C}}$$

and

$$f_* Py = \operatorname{Ran}_f Py = \int_{x \in \mathbb{X}} [\mathbb{Y}(y, fx) \Rightarrow Px]$$
 $f^* Qx = Q(fx)$
 $f_! Py = \operatorname{Lan}_f Py = \int^{x \in \mathbb{X}} \mathbb{Y}(fx, y) \times Px$

Generalised Dependent Polynomial Functors

The class of

generalised dependent polynomial functors

is the closure under natural isomorphism of the functors

$$\mathfrak{P}\mathbb{A} \to \mathfrak{P}\mathbb{B}$$

arising as composites

$$\mathbb{PA} \xrightarrow{s^*} \mathbb{PI} \xrightarrow{f_*} \mathbb{PJ} \xrightarrow{t_!} \mathbb{PB}$$

from diagrams

$$\mathbb{A} \stackrel{\mathsf{s}}{\longleftarrow} \mathbb{I} \stackrel{\mathsf{f}}{\longrightarrow} \mathbb{J} \stackrel{\mathsf{t}}{\longrightarrow} \mathbb{B}$$

in Cat.

$$t_! f_* s^* A b = \int^{j \in \mathbb{J}} \mathbb{B}(tj, b) \times \int_{i \in \mathbb{I}} \left[\mathbb{J}(j, fi) \Rightarrow A(si) \right]$$

Examples:

Dependent polynomial functors (aka indexed containers) between slices of Set are [isomorphic to] generalised dependent polynomial functors.

Untyped abstract syntax

1. The rule

$$\frac{\Gamma \vdash \mathsf{t} \qquad \Gamma \vdash \mathsf{t}'}{\Gamma \vdash \mathsf{t}(\mathsf{t}')}$$

has associated the generalised dependent polynomial endofunctor represented by

FinSet $\stackrel{\nabla_2}{\longleftarrow} 2 \cdot \text{FinSet} \stackrel{\nabla_2}{\longrightarrow} \text{FinSet} \stackrel{\mathrm{id}}{\longrightarrow} \text{FinSet}$

Untyped abstract syntax

1. The rule

$$\frac{\Gamma \vdash \mathsf{t} \qquad \Gamma \vdash \mathsf{t}'}{\Gamma \vdash \mathsf{t}(\mathsf{t}')}$$

has associated the generalised dependent polynomial endofunctor represented by

FinSet
$$\stackrel{\nabla_2}{\longleftarrow} 2 \cdot \text{FinSet} \stackrel{\nabla_2}{\longrightarrow} \text{FinSet} \stackrel{\mathrm{id}}{\longrightarrow} \text{FinSet}$$

2. The rule

$$\frac{\Gamma, x \vdash t}{\Gamma \vdash \lambda x. t}$$

has associated the generalised dependent polynomial endofunctor represented by

$$\mathsf{FinSet} \overset{\mathrm{id}}{\longleftarrow} \mathsf{FinSet} \overset{\mathrm{id}}{\longrightarrow} \mathsf{FinSet} \overset{\mathrm{id}}{\longrightarrow} \mathsf{FinSet}$$

Simply typed abstract syntax

Let S be the set of simple types and write C for the category FinSet/S of S-sorted contexts.

1. The rule

$$\frac{\Gamma \vdash t : \tau' \Rightarrow \tau \qquad \Gamma \vdash t' : \tau'}{\Gamma \vdash t(t') : \tau}$$

has associated the generalised dependent polynomial endofunctor represented by

$$\mathbf{C} \times \mathbf{S} \overset{[\mathrm{id} \times \Rightarrow, \mathrm{id} \times \pi_1]}{\longleftarrow} 2 \cdot (\mathbf{C} \times \mathbf{S}^2) \overset{\nabla_2}{\longrightarrow} \mathbf{C} \times \mathbf{S}^2 \overset{\mathrm{id} \times \pi_2}{\longrightarrow} \mathbf{C} \times \mathbf{S}$$

Simply typed abstract syntax

Let S be the set of simple types and write C for the category FinSet/S of S-sorted contexts.

1. The rule

$$\frac{\Gamma \vdash \mathsf{t} : \tau' \Rightarrow \tau \qquad \Gamma \vdash \mathsf{t}' : \tau'}{\Gamma \vdash \mathsf{t}(\mathsf{t}') : \tau}$$

has associated the generalised dependent polynomial endofunctor represented by

$$\mathbf{C} \times \mathbf{S} \overset{[\mathrm{id} \times \Rightarrow, \mathrm{id} \times \pi_1]}{\longleftarrow} 2 \cdot (\mathbf{C} \times \mathbf{S}^2) \overset{\nabla_2}{\longrightarrow} \mathbf{C} \times \mathbf{S}^2 \overset{\mathrm{id} \times \pi_2}{\longrightarrow} \mathbf{C} \times \mathbf{S}$$

2. The rule

$$\frac{\Gamma, x : \sigma \vdash t : \tau}{\Gamma \vdash \lambda x. \, t : \sigma \Rightarrow \tau}$$

has associated the generalised dependent polynomial endofunctor represented by

$$\mathbf{C} \times \mathbf{S} \stackrel{+ \times \mathrm{id}}{\longleftarrow} \mathbf{C} \times \mathbf{S} \times \mathbf{S} \stackrel{\mathrm{id}}{\longrightarrow} \mathbf{C} \times \mathbf{S} \times \mathbf{S} \stackrel{\mathrm{id} \times \Rightarrow}{\longrightarrow} \mathbf{C} \times \mathbf{S}$$

NB: The association of generalised dependent polynomial functors to rules extends to *polymorphic languages*. In this context, the last component of the representation plays a crucial role as a *pattern-matching* constructor.

Convolution monoidal closed structure

- Day's convolution tensor product is [isomorphic to] a generalised dependent polynomial functor.
- 2. Exponentiation to a representable with respect to the closed structure associated to the convolution monoidal structure is a generalised polynomial functor.

Generalised Inductive Dependent Polynomial Functors

The class of generalised dependent polynomial functors represented by diagrams of the form

$$\mathbb{A} \longleftarrow \coprod_{k \in K} \mathbb{I}_k \cdot \mathbb{J}_k \xrightarrow{\coprod_{k \in K} \nabla_{\mathbb{I}_k}} \coprod_{k \in K} \mathbb{J}_k \longrightarrow \mathbb{B}$$

where L_k is finite for all $k \in K$,

- is closed under constants, identities, coproducts, finite products, and composition; and
- admits a (cartesian) differential calculus.

These functors

- are inductive (viz. finitary and preserve epis); and
- admit inductively-defined free algebras for equational systems.

Application Areas

Data types.(e.g. reasoning)

Type theory.(e.g. formalisation)

Logical frameworks.(e.g. synthesis)

Dependently-typed programming. (e.g. zippers)

Concurrency theory.(e.g. models)

Pointers

- [1] G. Birkhoff. On the structure of abstract algebras. *P. Camb. Philos. Soc.*, 31:433–454, 1935.
- [2] A. Church. A formulation of the Simple Theory of Types. *JSL*, 5:56–68, 1940.
- [3] A. Church. The calculi of lambda-conversion. Princeton University Press, 1941.
- [4] D. Kan. Adjoint functors. *Trans. Amer. Math. Soc.*, 87(2):294–329, 1958.
- [5] F.W. Lawvere. Functorial semantics of algebraic theories. Ph.D. Thesis, Columbia University, 1963. (*TAC*, No. 5, pp. 1–121, 2004.)
- [6] F. Linton. Some aspects of equational theories. *Proc. Conf. on Categorical Algebra at La Jolla*, pp. 84–95, 1966.
- [7] B. Day. On closed categories of functors. LNM 137, pp. 1–38, 1970.
- [8] J.-Y. Girard. Une extension de l'interpretation de Gödel à l'analyse, et son application à l'élimination des coupures dans l'analyse et la théorie des types.

- Second Scandinavian Logic Symposium, 1971.
- [9] J. Boardman and R. Vogt. Homotopy invariant algebraic structures on topological spaces. LNM 347, 1973.
- [10] P. Martin-Löf. An intuitionistic theory of types. British Logic Colloquium, 1973.
- [11] J. P. May. The geometry of iterated loop spaces. LNM 271, 1972.
- [12] J. Reynolds. Towards a theory of type structure. Colloque sur la Programmation, 1974.
- [13] P. Aczel. A general Church-Rosser theorem. Typescript, 1978
- [14] J. Cartmell. Generalised algebraic theories and contextual categories. Ph.D. Thesis, University of Oxford, 1978.
- [15] P. Aczel. Frege structures and the notion of proposition, truth and set. *The Kleene Symposium*, pp. 31–59, 1980.
- [16] J. Cartmell. Generalised algebraic theories and contextual categories. *Annals of Pure and Applied*

- Logic, 32:209-243, 1986.
- [17] M. Makkai. First-order logic with dependent sorts, with applications to category theory. Preprint, 1995.
- [18] P. Dybjer Internal type theory. *TYPES'95*, LNCS 1158, pp. 120–134, 1996.
- [19] G. Plotkin. Binding algebras: A step from universal algebra to type theory. Invited talk at *RTA-98*, 1998.
- [20] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. *LICS'99*, pp. 193–202, 1999.
- [21] N. Gambino and M. Hyland. Wellfounded trees and dependent polynomial functors. *TYPES'04*, LNCS 3085, pp. 210–225, 2004.
- [22] M. Fiore. Mathematical models of computational and combinatorial structures. *FoSSaCS 2005*, LNCS 3441, pp. 25–46, 2005.
- [23] M. Hamana. Free Σ-monoids: A higher-order syntax with metavariables. APLAS 2004, LNCS 3202, pp. 348–363, 2005.
- [24] T. Altenkirch, N. Ghani, P. Hancock, C. McBride, and P. Morris. Indexed containers. Unpublished

- manuscript, 2008.
- [25] M. Fiore. Second-order and dependently-sorted abstract syntax. *LICS'08*, pp. 57–68, 2008.
- [26] M. Fiore and C.-K. Hur. Term equational systems and logics. *MFPS'08*, ENTCS 218, pp. 171–192, 2008.
- [27] T. Altenkirch and P. Morris. Indexed containers. *LICS'09*, pp. 277–285, 2009.
- [28] R. Blute, J. R. Cockett and R. Seely. Cartesian differential categories. *TAC*, Vol. 22, No. 23, pp. 622–672, 2009.
- [29] M. Fiore. Algebraic Meta-Theories and Synthesis of Equational Logics. Research Programme, 2009.
- [30] M. Fiore and C.-K. Hur. On the construction of free algebras for equational systems. *TCS*, 410(18):1704–1729, 2009.
- [31] M. Fiore and C.-K. Hur. Second-order equational logic. *CSL 2010*, LNCS 6247, pp. 320–335, 2010.
- [32] M. Fiore and O. Mahmoud. Second-order algebraic theories. *MFCS 2010*, LNCS 6281, pp. 368–380, 2010.

- [33] M. Fiore and C.-K. Hur. On the mathematical synthesis of equational logics. LMCS-7(3:12), 2011.
- [34] M. Hamana. Polymorphic abstract syntax via Grothendieck construction. *FoSSaCS 2011*, LNCS 6604, pp. 381–395, 2011.
- [35] M. Hamana and M. Fiore. A foundation for GADTs and Inductive Families: Dependent polynomial functor approach. *ACM WGP*, 2011.