Algebraic Foundations
for Type Theories

Marcelo Fiore

COMPUTER LABORATORY
UNIVERSITY OF CAMBRIDGE

Types 2011
8.1X.2011

The known

Cat. Alg.

//15t-orde?\

Univ. Alg. Eqg. Log.

Alg. Theories

(mon, grp,
ring, mod, ...)

> [T, 5, 6]

The Unknown

Cat. Alg.
15t order . ?
Univ. Alg. Eqg. Log. B .

Alg. Theories Type Theories
(mon, grp, (simply typed,

ring, mod, ...) dep. typed,
polymorphic,

linear, ...)

> [1, 5, 6], [29].

Programme

mathematical

meta-theories
models

» Development of algebraic meta-theories
for formal languages.

¢+ Semantics
— Model theory.

¢ Syntax
— Initial-algebra semantics.
— Structural induction and
recursion.
— Substitution.

» Synthesis of deduction systems for
equational reasoning and computation
by rewriting.

» [29], [26].

The Space

Multi-Sorted

Univ. Alg
/sors/

Univ. Alg

v
B

The Space

Multi-Sorted
Univ. Alg

/Sors/ binding

A
| Simple
Univ. Alg Type Theory
bmdlr& simple types
Binding
Alg.

The Space

Multi-Sorted
Univ. Alg

SOFS/
e

Univ. Alg

binding

Binding
Alg.

type
“dep.”

b'i"nding

Dep.-Sorted
Alg.

A

Simple
Type Theory

7

\ simple tybes

The Space

Multi-Sorted
Univ. Alg

SOFS/
e

Univ. Alg

binding

Binding
Alg.

> (1], [2], [14], [10

type
“dep.”

b'i"nding

Dep.-Sorted
Alg.

A

binding

N

Simple
Type Theory

type_

dep.

Dependent
Type Theory

7

\ simple tybes

Univ. Alg

The Space

binding

N

type_

dep.

Dependent
Type Theory

Multi-Sorted _type> Dep.-Sorted
Univ. Alg dep. Alg.
sors/ bi'ndin_g
/ BN
Simple
Type Theory
b'nd'r& simple types
Binding explicit
Alg. polymorphism

Polymorphic
Type Theory

» 1], [2], [14], [10], [8, 12]

Univ. Alg

linearity

The Space

binding

N

type_

dep.

Dependent
Type Theory

Multi-Sorted _type> Dep.-Sorted
Univ. Alg dep. Alg.
sors/ bi'ndin_g
/ BN
Simple
Type Theory
b'nd'r& simple types
Binding explicit
Alg. polymorphism

Operads

Polymorphic
Type Theory

» (1], [2], [14], [10], [8, 12, [9, TT].

The Space

Multi-Sorted _type> Dep.-Sorted
Univ. Alg dep. Alg.

/Sors/ binding binding

A A

_ Simple type | Dependent
Univ. Alg Type Theory | dep.” | Type Theory
b'nd'ri simple types
_ _ Binding | explicit
linearity Alg. polymorphism
5 . Polymorphic
peraas Type Theory

The Talk

I Modelling of simple type theories.
II Modelling of dependent type theories.

III Foundations.

» (1], [2], [14], [10], [8, 12, [9, TT].

|

Algebraic Modelling of
Simple Type Theories

Simple Type Theory

algebraic simply-typed

theories theories
types | unstructured algebraic
algebraic
terms algebraic with
binding

The syntactic theory should account for:

» variables and meta-variables
» Vvariable binding and «-equivalence
» capture-avoiding and meta substitution

» mono and multi sorting

» [19, 20, 22, 25).

Categories of Contexts

Def: An S-sorted context structure Is given by

» a small category C with terminal object,
» objects (o) € Cforall o € S,

» product diagrams

I, o
\
v (o)

forall'e Cand o € S.

Example: FinSet™ is the initial mono-sorted
context structure.

Algebraic Models of
Variable Binding in C°

Example: Untyped A-calculus.

» Syntax:

t o= x| t/(t") | Ax.t

Algebraic Models of
Variable Binding in C°

Example: Untyped A-calculus.

» Syntax:
t o= x| t/(t") | Ax.t

» Algebras:
var: 1 — AY(®
app: A — A in C
abs: AYS o A
C =%f 8et™ andy : C — C is the
Yoneda embedding

Algebraic Models of
Variable Binding in C°

Example: Untyped A-calculus.

» Syntax:

t o= x| t/(t") | Ax.t

» Algebras:

var: 1 — AY(®
app: A — A in C
abs: AYS o A
C =%f 8et®” and y : C — C is the
Yoneda embedding

NB:
PYT) = P(T}s)
as
C¢ C
- sl (—)xy<s>l4T(—)y<s> 4l
C¢ C

Algebraic Models of
Variable Binding in C®

Example: Untyped A-calculus.

» Syntax:
t o= x| t'(t") | M.t

» Algebras:
var: y(s) — A
app: A2 A in C
abs: AY'S o A

» Initial model:
/\ c SetFinSet

with A(n) the set of a-equivalence classes
of A-terms with free variables amongst

X1yeooy X

> [20, 22].

Single-Variable Substitution

» Substitution algebras:
subst: AYS x A =5 A
satisfying

. hatural axioms ...

Single-Variable Substitution

» Substitution algebras:

subst: AYS x A — A
satisfying

. hatural axioms ...

» Initial model:
/\ c SetFinSet

with capture-avoiding single-variable
substitution.

> [20, 22].

Substitution Algebras
S utA b var(x)[Y/x] = u

S trAutA R Y] =t

C ot AYEYS) x oy (s)
-t y) [V /T = tx, x)

ot AV s AV y A

- (e,) [0y) [/x]
= (tly,) [/]) MO)

Substitution Algebras
L utA Fvar(x)|[%/x] =u

2. ttAutA R t[Y/x] =t

3.t AYEDYIS) x oy (s)
-t y) [V /T = tx, x)

4.t AV 1 AYIS) v A
= (b,) My) [Y/x]
= (e, x) [V/x) MOy)
5. 4t/ AYS u: A
- app(t(x),t'(x)) [*/x]
= app(/x|, () [/x])
6. t: AYEY(E A
- abs(Ay. t(y,x)) [" /x|
= abs(Ay.t(y,x)|%/x])

> 20, 22].

Free Constructions

SubstAlg

¥
SetFinSet

» EXxplicit description of syntax with variable
binding.

» Induction principle for syntax with variable
biding.

» Definition of capture-avoiding substitution
by structural recursion.

> [23, 25].

Free Constructions

SubstAlg

¥
SetFinSet

» EXxplicit description of syntax with variable
binding.

» Induction principle for syntax with variable
biding.

» Definition of capture-avoiding substitution
by structural recursion.

» Mathematical foundations for metavariables.

> [23, 25].

Metavariables

SubstAlg

K

SetFlnSet

(L)

M

» Kleisli maps

y(m) — M(L;y(m)
are in bijective correspondence with terms

t o= x| t'(t") | M.t
| Milty, ..t
with free variables amongst x4, ..., xn.

» Definition of meta-substitution by structural
recursion:

M(X) x Y* — M(Y)

> (13, 23, 25].

Second-Order
Equational Presentations

Example: Untyped A-calculus.
(P)M:1p>x ()\X.M[x])x — M[x]
M) M:0> - F Ax.M[](x) =M]]

Second-Order
Equational Presentations

Example: Untyped A-calculus.
(P)M:1p>x ()\X.M[x])x — M[x]
M) M:0> - F Ax.M[](x) =M]]

Second-Order
Equational Logic

(Extended Metasubstitution Rule)

M1:m1,...,Mk:mk>F|—szt

@DA,XL],...,Xi,mil_SiEti (1§1§k)

O 1A

= s{M; == (X3)sih<ick = H{M; = (%) tih<ick

Results

Extension of the mathematical theory of (first-order)
algebraic structure to simple type theory:

Cat. Alg.
/an-order\
Univ. Alg. Eq. Log.

» Conservativity of Second-Order Equational
Logic over Birkhoff’s (first-order) Equational
Logic.

» Soundness and completeness of Second-Order
Equational Logic.

» Soundness and completeness of (bidirectional)
Second-Order Term Rewriting.

» Presentation/theory correspondence via
classifying categories and internal languages.

» Universal-algebra/categorical-algebra
correspondence.

» Theory of syntactic algebraic translations.

» (31, 32].

I1

Algebraic Modelling of
Dependent Type Theories

Dependent IType Theory

simply-typed dependently-typed
theories theories
: algebraic
types | algebraic with binding
algebraic algebraic
terms with with
binding binding

The syntactic theory should account for:

» type dependency
» Vvariable binding and «x-equivalence

» term and type substitution

» Dependency.

- Co
x,y:Co F Ci(x,y)

» Binding.

Fx:oF T

N'ETTlx:o.7T

Nx:oFt:7

'EAx:o0t:Ilx:0.7T

» Substitution.

N=t:T1x: 0.1 'Fu:o

MEt(u):t|"/x

Ax:o.t)(u) = t|"/x]

Categories of
Dependent Contexts

Def. A dependently-typed context structure is
given by

» a small category C with terminal object,

» apresheaf S e C,

» a functorial assignment of pullbacks

/ \
RN /

forallFFaandf:AaFmC.

Type-Dependent Binding

» Local context-extension lemma.
ForFl—GandPEE/\r,

py(mreo)(A 15 T) = P(A,o[f] = T) .

Type-Dependent Binding

» Local context-extension lemma.
ForFl—GandPE@\r,

py(mol(A -5 T) = P(A,olf] = T) .
» Type-dependent binding operators.

My : S —5 Srin C r

Decomposition of
Binding Arities

» ForI'F o, consider the adjunction

T
C/r T C/r,g

-

C/n

Decomposition of
Binding Arities

» ForI'F o, consider the adjunction

T
C/r T C/ng

-

C/n

» It induces the adjoint situation:

<~—(C/x)

» Binding-arity decomposition lemma.

For I - o, the monad (—)Y"~<) on 6}
IS Induced by the adjunction ¢, - 0.

Binding Arities
» We thus obtain the following situation

.
— ~ en o o~ —
Cir = Crym T Chume = Crro

U — (yn)—>

1T

Binding Arities
» We thus obtain the following situation

A

@r = C/ym T Chume = Crro

(—)Y (7o)

Type-Dependent Binding

» Type-dependent binding operators.

Me: 1, (y(T,0)*S) = S inC

Binding Arities
» We thus obtain the following situation

e ——

@r = C/ym T Chume = Crro

(—)Y (7o)

Type-Dependent Binding

» Type-dependent binding operators.

Me: 1, (y(T,0)*S) = S inC

Term Binding

» Term binding operators.
For'ocand Tl ot T,

Variables
y(l; o) Ts

y(ﬂk /

y(I')

» Thisistogiveaterm ot p: olmr,l.

Variables
y(l; o) Ts

y(ﬂk /

y(I')

» Thisistogiveaterm ot p: olmr,l.

NB: Categories with attributes/families

The condition

y(l, o) = Ty

ym& /

y(I')

IS equivalent to Dybjer’s context comprehension
property: For allmaps f: A — I'in C and terms
A F t: olf] there exists a unique map

(f,t) : A — ([o) in C such that p|(f,t)] =t and
- o (f, t) = f.

» The initial model is the classifying category.

» (14, 18].

Substitution Structure

Forl F o,

TFY(TKFI—O‘) X Treg — Tr
l l N C)

Sry(ﬂrm) X Trig — Sr

subject to axioms.

I1

Algebraic Foundations

Kan Extensions

Every
f:X—Y
Induces
L
-
PX <f— PY
T
T
where
PC = Set"
and

f.Py = RanfPy = | _[Y(y,fx) = Px]
*Qx
fiPy = LansPy = [Y(fx,y) x Px

|
@)
—
kaY

Generalised
Dependent Polynomial Functors

The class of
generalised dependent polynomial functors

IS the closure under natural isomorphism of the
functors

PA — PB

arising as composites

PA =Pl Py R

from diagrams

In Cat.

tf.s*Ab = [B(tj,b) x [, [J(,fi) = A(si)]

Examples:

» Dependent polynomial functors (aka
iIndexed containers) between slices of
Set are [iIsomorphic to] generalised
dependent polynomial functors.

> [21], 24].

» Untyped abstract syntax

1. The rule
M-t M-t

"= t(t)
has associated the generalised
dependent polynomial endofunctor
represented by

FinSet ﬁz— 2 - FInSet —vé FinSet —-% FinSet

» Untyped abstract syntax

1. The rule
M-t M-t

"= t(t)
has associated the generalised
dependent polynomial endofunctor
represented by

FinSet ﬁz— 2 - FInSet —vé FinSet —-% FinSet

2. The rule
xFH1t

'F Ax.t
has associated the generalised
dependent polynomial endofunctor
represented by

FinSet <- FinSet % FinSet - FinSet

» Simply typed abstract syntax

Let S be the set of simple types and write
C for the category FinSet s of S-sorted
contexts.

1. The rule
NFt:t'=n1 M=t .1
FEt(t):T
has associated the generalised

dependent polynomial endofunctor
represented by

CxS ™ (CxS?) xR CxS

» Simply typed abstract syntax

Let S be the set of simple types and write
C for the category FinSet s of S-sorted
contexts.

1. The rule
Nt:7" =71 N=t':7

FEt(t):T
has associated the generalised
dependent polynomial endofunctor
represented by

[idxX= id x 717]

CxS'“EY ™M (xS B xS Y% exs

2. The rule
Lx:oFt:T

N-Ax.t:o=>n1
has associated the generalised
dependent polynomial endofunctor
represented by

CxSTCcxsxS4LCcxsSxSYICcxsS

NB: The association of generalised
dependent polynomial functors to rules
extends to polymorphic languages.

In this context, the last component of
the representation plays a crucial role
as a pattern-matching constructor.

» Convolution monoidal closed structure

1. Day’s convolution tensor product
IS [iIsomorphic to] a generalised

. EX

de

pendent polynomial functor.

ponentiation to a representable

Wit

N respect to the closed structure

associated to the convolution
monoidal structure is a generalised
polynomial functor.

Generalised Inductive
Dependent Polynomial Functors

The class of generalised dependent polynomial
functors represented by diagrams of the form

HkEK va]_[Jk B
keK 5

A<— HkEK I—k) Jk
where Ly is finite for all k € K,

» IS closed under constants, identities,
coproducts, finite products, and
composition; and

» admits a (cartesian) differential calculus.

These functors

» are inductive (viz. finitary and preserve
epis); and

» admit inductively-defined free algebras
for equational systems.

>

>

>

Application Areas

Data types.
(e.g. reasoning)

Type theory.
(e.g. formalisation)

Logical frameworks.
(e.g. synthesis)
Dependently-typed programming.
(e.g. zippers)

Concurrency theory.
(e.g. models)

Pointers

[1] G.Birkhoff. On the structure of abstract algebras.
P. Camb. Philos. Soc., 31:433-454, 1935.

[2] A.Church. A formulation of the Simple Theory of
Types. JSL, 5:56-68, 1940.

[3] A.Church. The calculi of lambda-conversion.
Princeton University Press, 1941.

[4] D.Kan. Adjoint functors. Trans. Amer. Math. Soc.,
87(2):294-329, 1958.

[5] EW. Lawvere. Functorial semantics of algebraic
theories. Ph.D. Thesis, Columbia University, 1963.
(TAC, No. 5, pp. 1-121, 2004.)

[6] F Linton. Some aspects of equational theories.
Proc. Conf. on Categorical Algebra at La Jolla,
pp. 84-95, 1966.

[7] B.Day. On closed categories of functors. LNM 137,
pp. 1-38, 1970.

[8] J.-Y.Girard. Une extension de l'interpretation de
Godel a I'analyse, et son application a I'élimination
des coupures dans 'analyse et la théorie des types.

Second Scandinavian Logic Symposium, 1971.

[9] J.Boardman and R. Vogt. Homotopy invariant
algebraic structures on topological spaces.
LNM 347, 1973.

[10] P.Martin-Lof. An intuitionistic theory of types.
British Logic Colloquium, 1973.

[11] J.P.May. The geometry of iterated loop spaces.
LNM 271, 1972.

[12] J.Reynolds. Towards a theory of type structure.
Colloque sur la Programmation, 1974.

[13] P.Aczel. A general Church-Rosser theorem.
Typescript, 1978

[14] J. Cartmell. Generalised algebraic theories and
contextual categories. Ph.D. Thesis, University of
Oxford, 1978.

[15] P.Aczel. Frege structures and the notion of
proposition, truth and set. The Kleene Symposium,
pp. 31-59, 1980.

[16] J.Cartmell. Generalised algebraic theories and
contextual categories. Annals of Pure and Applied

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

Logic, 32:209-243, 1986.

M. Makkai. First-order logic with dependent sorts,
with applications to category theory. Preprint, 1995.

P. Dybjer Internal type theory. TYPES’95,
LNCS 1158, pp. 120-134, 1996.

G. Plotkin. Binding algebras: A step from universal
algebra to type theory. Invited talk at RTA-98, 1998.

M. Fiore, G. Plotkin, and D. Turi. Abstract syntax
and variable binding. LICS’99, pp. 193-202, 1999.

N. Gambino and M. Hyland. Wellfounded trees
and dependent polynomial functors. TYPES’'04,
LNCS 3085, pp. 210-225, 2004.

M. Fiore. Mathematical models of computational
and combinatorial structures. FoSSaCS 2005,
LNCS 3441, pp. 25-46, 2005.

M. Hamana. Free X-monoids: A higher-order syntax
with metavariables. APLAS 2004, LNCS 3202,
pp. 348-363, 2005.

T. Altenkirch, N. Ghani, P. Hancock, C. McBride,
and P. Morris. Indexed containers. Unpublished

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

manuscript, 2008.

M. Fiore. Second-order and dependently-sorted
abstract syntax. LICS’08, pp. 57-68, 2008.

M. Fiore and C.-K. Hur. Term equational systems and
logics. MFPS’08, ENTCS 218, pp. 171-192, 2008.

T. Altenkirch and P. Morris. Indexed containers.
LICS’09, pp. 277-285, 2009.

R. Blute, J. R. Cockett and R. Seely. Cartesian
differential categories. TAC, Vol. 22, No. 23,
pp. 622-672, 2009.

M. Fiore. Algebraic Meta-Theories and Synthesis
of Equational Logics. Research Programme, 2009.

M. Fiore and C.-K. Hur. On the construction of
free algebras for equational systems. TCS,
410(18):1704-1729, 2009.

M. Fiore and C.-K. Hur. Second-order equational
logic. CSL 2010, LNCS 6247, pp. 320-335, 2010.

M. Fiore and O. Mahmoud. Second-order algebraic
theories. MFCS 2010, LNCS 6281, pp. 368—-380,
2010.

[33]

[34]

[35]

M. Fiore and C.-K. Hur. On the mathematical
synthesis of equational logics. LMCS-7(3:12),
2011.

M. Hamana. Polymorphic abstract syntax via
Grothendieck construction. FoSSaCS 2011,
LNCS 6604, pp. 381-395, 2011.

M. Hamana and M. Fiore. A foundation for
GADTs and Inductive Families: Dependent
polynomial functor approach. ACM WGP, 2011.

