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Programme

mathematical

meta-theories
models

» Development of algebraic meta-theories
for formal languages.

¢+ Semantics
— Model theory.

¢ Syntax
— Initial-algebra semantics.
— Structural induction and
recursion.
— Substitution.

» Synthesis of deduction systems for
equational reasoning and computation
by rewriting.

» [29], [26].
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The Talk

I  Modelling of simple type theories.
II  Modelling of dependent type theories.

III Foundations.

» (1], [2], [14], [10], [8, 12, [9, TT].
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Simple Type Theory

algebraic simply-typed

theories theories
types | unstructured algebraic
algebraic
terms algebraic with
binding

The syntactic theory should account for:

» variables and meta-variables
» Vvariable binding and «-equivalence
» capture-avoiding and meta substitution

» mono and multi sorting

» [19, 20, 22, 25).



Categories of Contexts

Def: An S-sorted context structure Is given by

» a small category C with terminal object,
» objects (o) € Cforall o € S,

» product diagrams

I, o
\
v (o)

forall'e Cand o € S.

Example: FinSet™ is the initial mono-sorted
context structure.
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Algebraic Models of
Variable Binding in C°

Example: Untyped A-calculus.

» Syntax:

t o= x| t/(t") | Ax.t

» Algebras:

var: 1 — AY(®
app: A — A in C
abs: AYS o A
C =%f 8et®” and y : C — C is the
Yoneda embedding

NB:
PYT) = P(T}s)
as
C¢ C
- sl (—)xy<s>l4T(—)y<s> 4l
C¢ C




Algebraic Models of
Variable Binding in C®

Example: Untyped A-calculus.

» Syntax:
t o= x| t'(t") | M.t

» Algebras:
var: y(s) — A
app: A2 A in C
abs: AY'S o A

» Initial model:
/\ c SetFinSet

with A(n) the set of a-equivalence classes
of A-terms with free variables amongst

X1yeooy X

> [20, 22].
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Single-Variable Substitution

» Substitution algebras:

subst: AYS x A — A
satisfying

. hatural axioms ...

» Initial model:
/\ c SetFinSet

with capture-avoiding single-variable
substitution.

> [20, 22].



Substitution Algebras
S utA b var(x)[Y/x] = u

S trAutA R Y] =t

C ot AYEYS) x oy (s)
-t y) [V /T = tx, x)

ot AV s AV y A

- (e, ) [0y ) [ /x ]
= (tly, ) [/ ]) MO )




Substitution Algebras
L utA Fvar(x)|[%/x] =u

2. ttAutA R t[Y/x] =t

3.t AYEDYIS) x oy (s)
-t y) [V /T = tx, x)

4.t AV 1 AYIS) v A
= (b, ) My ) [Y/x]
= (e, x) [V/x ) MOy )
5. 4t/ AYS u: A
- app(t(x),t'(x)) [*/x ]
= app( /x|, () [ /x])
6. t: AYEY(E A
- abs(Ay. t(y,x)) [ " /x|
= abs(Ay.t(y,x)|%/x])

> 20, 22].
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» EXxplicit description of syntax with variable
binding.

» Induction principle for syntax with variable
biding.

» Definition of capture-avoiding substitution
by structural recursion.

> [23, 25].



Free Constructions

SubstAlg

¥
SetFinSet

» EXxplicit description of syntax with variable
binding.

» Induction principle for syntax with variable
biding.

» Definition of capture-avoiding substitution
by structural recursion.

» Mathematical foundations for metavariables.

> [23, 25].



Metavariables

SubstAlg

K

SetFlnSet

(L)

M

» Kleisli maps

y(m) — M(L;y(m)
are in bijective correspondence with terms

t o= x| t'(t") | M.t
| Milty, ..t
with free variables amongst x4, ..., xn.

» Definition of meta-substitution by structural
recursion:

M(X) x Y* — M(Y)

> (13, 23, 25].
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Second-Order
Equational Presentations

Example: Untyped A-calculus.
(P)M:1p>x ()\X.M[x])x — M[x]
M) M:0> - F Ax.M[](x) =M]]

Second-Order
Equational Logic

(Extended Metasubstitution Rule)

M1:m1,...,Mk:mk>F|—szt

@DA,XL],...,Xi,mil_SiEti (1§1§k)

O 1A

= s{M; == (X3)sih<ick = H{M; = (%) tih<ick




Results

Extension of the mathematical theory of (first-order)
algebraic structure to simple type theory:

Cat. Alg.
/an-order\
Univ. Alg. Eq. Log.

» Conservativity of Second-Order Equational
Logic over Birkhoff’s (first-order) Equational
Logic.

» Soundness and completeness of Second-Order
Equational Logic.

» Soundness and completeness of (bidirectional)
Second-Order Term Rewriting.

» Presentation/theory correspondence via
classifying categories and internal languages.

» Universal-algebra/categorical-algebra
correspondence.

» Theory of syntactic algebraic translations.

» (31, 32].
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Dependent IType Theory

simply-typed dependently-typed
theories theories
: algebraic
types | algebraic with binding
algebraic algebraic
terms with with
binding binding

The syntactic theory should account for:

» type dependency
» Vvariable binding and «x-equivalence

» term and type substitution




» Dependency.

- Co
x,y:Co F Ci(x,y)

» Binding.

Fx:oF T

N'ETTlx:o.7T

Nx:oFt:7

'EAx:o0t:Ilx:0.7T

» Substitution.

N=t:T1x: 0.1 'Fu:o

MEt(u):t|"/x

Ax:o.t)(u) = t|"/x]



Categories of
Dependent Contexts

Def. A dependently-typed context structure is
given by

» a small category C with terminal object,

» apresheaf S e C,

» a functorial assignment of pullbacks

/ \
RN /

forallFFaandf:AaFmC.




Type-Dependent Binding

» Local context-extension lemma.
ForFl—GandPEE/\r,

py(mreo)(A 15 T) = P(A,o[f] = T) .



Type-Dependent Binding

» Local context-extension lemma.
ForFl—GandPE@\r,

py(mol(A -5 T) = P(A,olf] = T) .
» Type-dependent binding operators.

My : S —5 Srin C r



Decomposition of
Binding Arities

» ForI'F o, consider the adjunction

T
C/r T C/r,g

-

C/n



Decomposition of
Binding Arities

» ForI'F o, consider the adjunction

T
C/r T C/ng

-

C/n

» It induces the adjoint situation:

<~—(C/x)

» Binding-arity decomposition lemma.

For I - o, the monad (—)Y"~<) on 6}
IS Induced by the adjunction ¢, - 0.



Binding Arities
» We thus obtain the following situation
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— ~ en o o~ —
Cir = Crym T Chume = Crro

U — (yn)—>

1T



Binding Arities
» We thus obtain the following situation

A

@r = C/ym T Chume = Crro

(—)Y (7o)

Type-Dependent Binding

» Type-dependent binding operators.

Me: 1, (y(T,0)*S) = S inC



Binding Arities
» We thus obtain the following situation

e ——

@r = C/ym T Chume = Crro

(—)Y (7o)

Type-Dependent Binding

» Type-dependent binding operators.

Me: 1, (y(T,0)*S) = S inC

Term Binding

» Term binding operators.
For'ocand Tl ot T,
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Variables
y(l; o) Ts

y(ﬂk /

y(I')

» Thisistogiveaterm ot p: olmr,l.

NB: Categories with attributes/families

The condition

y(l, o) = Ty

ym& /

y(I')

IS equivalent to Dybjer’s context comprehension
property: For allmaps f: A — I'in C and terms
A F t: olf] there exists a unique map

(f,t) : A — ([o) in C such that p|(f,t)] =t and
- o (f, t) = f.

» The initial model is the classifying category.

» (14, 18].



Substitution Structure

Forl F o,

TFY(TKFI—O‘) X Treg — Tr
l l N C )

Sry(ﬂrm) X Trig — Sr

subject to axioms.
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Kan Extensions

Every
f:X—Y
Induces
L
-
PX <f— PY
T
T
where
PC = Set"
and

f.Py = RanfPy = | _[Y(y,fx) = Px]
*Qx
fiPy = LansPy = [ Y(fx,y) x Px

|
@)
—
kaY




Generalised
Dependent Polynomial Functors

The class of
generalised dependent polynomial functors

IS the closure under natural isomorphism of the
functors

PA — PB

arising as composites

PA =Pl Py R

from diagrams

In Cat.

tf.s*Ab = [ B(tj,b) x [, [J(,fi) = A(si) ]



Examples:

» Dependent polynomial functors (aka
iIndexed containers) between slices of
Set are [iIsomorphic to] generalised
dependent polynomial functors.

> [21], 24].



» Untyped abstract syntax

1. The rule
M-t M-t

"= t(t)
has associated the generalised
dependent polynomial endofunctor
represented by

FinSet ﬁz— 2 - FInSet —vé FinSet —-% FinSet



» Untyped abstract syntax

1. The rule
M-t M-t

"= t(t)
has associated the generalised
dependent polynomial endofunctor
represented by

FinSet ﬁz— 2 - FInSet —vé FinSet —-% FinSet

2. The rule
xFH1t

'F Ax.t
has associated the generalised
dependent polynomial endofunctor
represented by

FinSet <- FinSet % FinSet - FinSet



» Simply typed abstract syntax

Let S be the set of simple types and write
C for the category FinSet s of S-sorted
contexts.

1. The rule
NFt:t'=n1 M=t .1
FEt(t):T
has associated the generalised

dependent polynomial endofunctor
represented by

CxS ™ (CxS?) xR CxS



» Simply typed abstract syntax

Let S be the set of simple types and write
C for the category FinSet s of S-sorted
contexts.

1. The rule
Nt:7" =71 N=t':7

FEt(t):T
has associated the generalised
dependent polynomial endofunctor
represented by

[idxX= id x 717 ]

CxS'“EY ™M (xS B xS Y% exs

2. The rule
Lx:oFt:T

N-Ax.t:o=>n1
has associated the generalised
dependent polynomial endofunctor
represented by

CxSTCcxsxS4LCcxsSxSYICcxsS



NB: The association of generalised
dependent polynomial functors to rules
extends to polymorphic languages.

In this context, the last component of
the representation plays a crucial role
as a pattern-matching constructor.




» Convolution monoidal closed structure

1. Day’s convolution tensor product
IS [iIsomorphic to] a generalised

. EX

de

pendent polynomial functor.

ponentiation to a representable

Wit

N respect to the closed structure

associated to the convolution
monoidal structure is a generalised
polynomial functor.



Generalised Inductive
Dependent Polynomial Functors

The class of generalised dependent polynomial
functors represented by diagrams of the form

HkEK va ]_[ Jk B
keK 5

A<— HkEK I—k ) Jk
where Ly is finite for all k € K,

» IS closed under constants, identities,
coproducts, finite products, and
composition; and

» admits a (cartesian) differential calculus.

These functors

» are inductive (viz. finitary and preserve
epis); and

» admit inductively-defined free algebras
for equational systems.



>

>

>

Application Areas

Data types.
(e.g. reasoning)

Type theory.
(e.g. formalisation)

Logical frameworks.
(e.g. synthesis)
Dependently-typed programming.
(e.g. zippers)

Concurrency theory.
(e.g. models)
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